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Outline of talk

Bernoulli mixture models for:

credit risk dependencies
claim dependencies in an insurance portfolio

Some early models of dependence

What are mixture models?

pros and cons

Covariate information

Data calibration
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Some notation

Consider a portfolio of n insurance policies during some well-defined
fixed reference period.

Random vector of claim indicators: I = (I1, I2, ..., In)′

Each policy k, k = 1, ..., n, comes with a random variable giving an
indication for claims:

Ik =
{

0, if no claim occurs
1, if a claim occurs

.

Joint probability function:
p (I) = P (I1 = i1, ..., In = in) for ik ∈ {0, 1} , k = 1, ..., n.

Mean vector: q = (q1, q2, ..., qn)′ where each qk = P (Ik = 1) is the
probability of a claim.
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Similar set-up for credit risk portfolios

One can also think of this portfolio of policies as:

a portfolio of credit risks
with each default indicator

Ik =
{

0, if no default occurs
1, if a default occurs

.

The primary interest is to model the joint probability function:

p (I) = P (I1 = i1, ..., In = in)

where in the most general sense the Bernoulli random variables Ik’s
are dependent random variables.
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Multivariate bernoulli

Random vector I is the most general possible case of a multivariate
Bernoulli.

Ik has a Bernoulli(qk) where qk is computed

qk =
1∑

i1=0

· · ·
1∑

ik−1=0

1∑
ik+1=0

· · ·
1∑

in=0

p (I) .

A special case of a multinomial distribution with a total of 2n − 1
parameters.

Sum is no longer a Binomial but is rather a correlated binomial
random variable.

Not often useful for many practical applications because of the large
numbers of parameters to estimate.
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Some models of dependence

The Frechet classes - Dhaene and Goovaerts (1997), Muller
(1997)

Common shock models - Marceau, et al. (1999)

global shock
local shock

Archimedean copula models - Genest et al. (2000), Frey and
McNeil (2003)

Latent variable models and copulas

Time-until-default (or time-until-claim) and common shock models -
Lindskog and McNeil (2003)

Emiliano A. Valdez (U.N.S.W.) Financial Services Forum 2006 6 / 25



Dependence through mixing

See McNeil, Frey and Embrechts (2005) in the context of
credit risks.

Conditional on unobservable Z = (Z1, ..., Zp)
′,

Ik|Z = Ik |Z for all k ∈ {1, 2, ..., n}

are independently, but not necessarily identically distributed.

Exchangeable in case identical.

Generally the dimension p of Z is smaller than n.

Assume there are Qk : Rp → [0, 1] for k ∈ {1, 2, ..., n} such that

P (Ik = 1 |Z) = pk|Z (1 |z) = Qk (Z) .
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Marginal and joint probabilities

Unconditional marginal probability:

qk = P (Ik = 1) =
∫

Qk (Z) dFZ (z) = EZ [Qk (Z)]

Joint (conditional) probability:

P (I1 = i1, ..., In = in |Z ) =
nY

k=1

pk|Z (ik |z ) =
nY

k=1

Qk (Z)
ik (1 − Qk (Z))

1−ik

Joint (unconditional) probability:

pI (i1, ..., in) = P (I1 = i1, ..., In = in)

=
∫ [

n∏
k=1

Qk (Z)ik (1−Qk (Z))1−ik

]
dFZ (z)

Recovers independence in the case Z is degenerate.
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Pairwise correlations

Bivariate joint probabilities for any pairs:

P (Ik = 1, Ik∗ = 1) = EZ [Qk (Z) Qk∗ (Z)]

Covariance for any pairs:

Cov (Ik, Ik∗) = EZ [Qk (Z) Qk∗ (Z)]− EZ [Qk (Z)]EZ [Qk∗ (Z)]

Variance:
V ar (Ik) = EZ [Qk (Z)] (1− EZ [Qk (Z)])

Pairwise correlation coefficient:

ρ (Ik, Ik∗) =
Cov (Ik, Ik∗)√

V ar (Ik) V ar (Ik∗)
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Ratio of relative risk

Here we ask: “how much does one insurance (or credit) risk induce
another insurance (or credit) risk to go on claim?”

Ratio of relative risk:

δ (Ik, Ik∗) =
P (Ik = 1 |Ik∗ = 1)
P (Ik = 0 |Ik∗ = 1)

=
EZ [Qk (Z) Qk∗ (Z)]

EZ [(1−Qk (Z))Qk∗ (Z)]

An important measure of dependence for Bernoulli random variables!
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Mixture models with covariates

Covariates are often introduced into the model to capture the
non-homogeneity in the portfolio and are used to understand how
they influence the probability of a claim (or default).

Denote the observed values of these r covariates by
xk = (x1k, ..., xrk)

′ and these covariates will enter into the model
specification via:

P (Ik = 1 |Z;xk ) = pk|Z (1 |z;xk ) = Q (Z;xk)

Specified functional form for

Q (Z;xk) = g
(
x′

iβ + σ′Z
)

where g : R → [0, 1] is some increasing function such as a distribution
function (e.g. g = Φ).
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Specific model specifications

Exponential-Gamma mixing distributions:
Q (Z;xk) = 1− exp

(
−x′

iβ − σ′Z
)

where Z is a vector of
independent Gamma distributed random variables.

Logit-Normal mixing distributions:
Q (Z;xk) = 1/1 + exp

(
−x′

iβ − σ′Z
)

where Z is a vector of
independent standard Normally distributed random variables.

Probit-Normal mixing distributions: Q (Z;xk) = Φ
(
x′

iβ + σ′Z
)

where Z is a vector of independent standard Normally distributed
random variables.

Beta-binomial model: Q (Z) = Z where Z is a Beta(a, b) distributed
random variable.

covariates can be introduced: Prentice (1986, 1988).
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Data description

Data consists of policy exposure and claims experience:

portfolio of automiobile insurance
period 1993-2001
insurance company in Singapore

Records consisted of exposure and experience at the individual
registered and insured vehicle level

details about driver and automobile risk characteristics

Observable data:

{Iit, eit,xit, t = 1, ..., Ti, i = 1, 2, ...,m} .
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Claim frequency and exposure

Year Number of claims Policy exposed Claims frequency

1993 840 12,157 6.9%
1994 1,739 15,389 11.3%
1995 869 8,074 10.8%
1996 736 7,556 9.7%
1997 1,760 16,216 10.9%
1998 2,455 23,691 10.4%
1999 3,630 36,647 9.9%
2000 3,770 45,806 8.2%
2001 3,349 44,910 7.5%
Total 19,148 210,446 9.1%
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Selection of mixture models

Model 1: Logit-Normal mixing distribution

Q (Z) = 1/ (1 + exp (−µ− σZ))

where Z is standard Normal.

Model 2: Probit-Normal mixing distribution

Q (Z) = Φ (µ + σZ)

where Z is standard Normal.

Model 3: Beta mixing variable

Q has Beta(a, b) distribution.
Appendix provides calculation details resulting from a Beta-Binomial
model.
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Maximum likelihood estimates

Mixture standard Neg log likelihood
model parms estimates errors − log L (θ;k) AIC BIC

Logit-Normal µ -2.418 0.014 *
σ 0.696 0.022 * 65,195.1 130,394 130,391

Probit-Normal µ -1.398 0.007 *
σ 0.342 0.012 * 65,154.8 130,314 130,310

Beta-Binomial a 13.6 0.125 *
b 132.0 3.205 * 65,292.4 130,589 130,586

* indicates significant at the 5% level.
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Degrees of dependence

Mixture dependence standard
model measures estimates errors

Logit-Normal q 0.0931 0.0007 *
δ 0.1446 0.0032 *
ρ 0.0367 0.0025 *

Probit-Normal q 0.0934 0.0007 *
δ 0.1477 0.0034 *
ρ 0.0390 0.0027 *

Beta-Binomial q 0.0936 0.0030 *
δ 0.1108 0.0037 *
ρ 0.0068 0.0002 *

* indicates significant at the 5% level.
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Premium as a covariate

We focus on the Logit-Normal and the Probit-Normal mixture models.

The premium is introduced as a covariate through the µ parameter by
specifying that

µ = β0 + β1 log (Premium/1000) .

For the Logit-Normal model, the intercept is -1.804 with s.e. of 0.014,
and the coefficient of log (Premium/1000) is 0.528 with s.e. of 0.009.

For the Probit-Normal model, the intercept is -1.080 with s.e. of
0.007. The coefficient of the log (Premium/1000) is 0.261 with s.e.
of 0.004.
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MLE with premium as covariate

Mixture standard Neg log likelihood
model parms estimates errors − log L (θ;k) AIC BIC

Logit-Normal β0 -1.804 0.014 *
β1 0.528 0.009 *
σ 0.521 0.024 * 63,043.6 126,093 126,088

Probit-Normal β0 -1.080 0.007 *
β1 0.261 0.004 *
σ 0.289 0.013 * 63,074.1 126,154 126,149

* indicates significant at the 5% level.
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Figure 1 - claim probability
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Figure: Claim probability - Logit-Normal vs. Probit-Normal
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Figure 2 - relative risk

0 2000 4000 6000 8000 10000
PREMIUM

0.0

0.2

0.4

0.6

Re
lati

ve 
risk

Figure: Relative risk - Logit-Normal vs. Probit-Normal
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Figure 3 - correlation
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Figure: Correlation - Logit-Normal vs. Probit-Normal
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Concluding remarks

Mixture models reduce the dimensionality of the problem.

Because the likelihood function requires integrating out the effect of
the mixing variable, estimation routines can become cumbersome.
However, SAS has procedure called NLMIXED that allow for this and
that can accommodate covariates as well.

A third advantage of the mixture model is some possible
mathematical tractability.

Finally, the unobservable variable in the Bernoulli mixture model has
the advantage of providing a natural interpretation to the resulting
model.
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